5. Dilations
Sign In
To obtain the image of a vertex after a dilation with scale factor k, multiply its coordinates by k.
Graph:
Type of Dilation: Reduction
A dilation can be an enlargement, a reduction, or the same size as the preimage. Which type of dilation it is depends on the value of the scale factor k.
Enlargement | k>1 |
---|---|
Reduction | 0 |
Same | k=1 |
ccc Preimage & & Image [0.5em] (x,y)& ⇒ & ( kx, ky) Now, let's find the coordinates of the vertices of QRTU after a dilation with a scale factor k= 13.
Dilation With Scale Factor k= 13 | ||
---|---|---|
Preimage | Multiply by k | Image |
Q(- 3,0) | ( 1/3(- 3), 1/3(0)) | Q'(- 3/3,0)=(- 1,0) |
R(- 3,6) | ( 1/3(- 3), 1/3(6)) | R'(- 3/3,6/3)=(- 1,2 ) |
T(4,6) | ( 1/3(4), 1/3(6)) | T'(4/3,6/3)=(4/3,2 ) |
U(4,0) | ( 1/3(4), 1/3(0)) | U'(4/3,0) |