5. Dilations
Sign In
To obtain the image of a vertex after a dilation with scale factor k, multiply its coordinates by k.
Graph:
Type of Dilation: Reduction
A dilation can be an enlargement, a reduction, or the same size as the preimage. Which type of dilation it is depends on the value of the scale factor k.
Enlargement | k>1 |
---|---|
Reduction | 0 |
Same | k=1 |
ccc Preimage & & Image [0.5em] (x,y)& ⇒ & ( kx, ky) Now, let's find the coordinates of the vertices of JKLM after a dilation with a scale factor k= 14.
Dilation With Scale Factor k= 14 | ||
---|---|---|
Preimage | Multiply by k | Image |
J(4,8) | ( 1/4(4), 1/4(8)) | J'(4/4,8/4)=(1,2) |
K(12,8) | ( 1/4(12), 1/4(8)) | K'(12/4,8/4)=(3,2 ) |
L(12,4) | ( 1/4(12), 1/4(4)) | L'(12/4,4/4)=(3,1 ) |
M(4,4) | ( 1/4(4), 1/4(4)) | M'(4/4,4/4)=(1,1 ) |