7. Circles in the Coordinate Plane
Sign In
Solve the system of equations using the Substitution Method.
A secant that contains a diameter, because the system has two solutions and the center of the circle lies on the line.
(I):y= -4/3x+2
(I):Subtract term
(I):(a± b)^2=a^2± 2ab+b^2
(I):Calculate power
(I):Multiply
(I):LHS * 9=RHS* 9
(I):LHS-225=RHS-225
(I):Add and subtract terms
Substitute values
Calculate power
Zero Property of Multiplication
Multiply
Calculate root
x=-150± 150/50 | |
---|---|
x_1=-150+150/50 | x_2=-150-150/50 |
x_1=0/50 | x_2=-300/50 |
x_1= 0 | x_2= -6 |
Now we can find corresponding y-values using the second equation.
y=-4/3x+2 | |
---|---|
y_1=-4/3( 0)+2 | y_2=-4/3( -6)+2 |
y_1=0+2 | y_2=8+2 |
y_1= 2 | y_2= 10 |
x= -3, y= 6
- a(- b)=a* b
a/3* 3 = a
Add terms