7. Circles in the Coordinate Plane
Sign In
Solve the system of equations using the Substitution Method.
A secant, because the system has two solutions and the center of the circle does not lie on the line.
(I):y= 15x-3
(I):Add terms
(I):(a-b)^2=a^2-2ab+b^2
(I):Calculate power
(I):Multiply
(I):LHS-4=RHS-4
(I):LHS * 25=RHS* 25
(I):Add and subtract terms
Substitute values
x=270± sqrt(7900)/52 | |
---|---|
x_1=270+sqrt(7900)/52 | x_2=270-sqrt(7900)/52 |
x_1=270+88.88.../52 | x_2=270-88.88.../52 |
x_1≈ 6.9 | x_2≈ 3.5 |
Now we can find corresponding y-values using the second equation.
y=1/5x-3 | |
---|---|
y_1≈1/5( 6.9)-3 | y_2≈1/5( 3.5)-3 |
y_1≈1.38-3 | y_2≈0.7-3 |
y_1≈ -1.62 | y_2≈ -2.3 |
x= 5, y= -1
a/5* 5 = a
Subtract term