4. Perimeter and Area in the Coordinate Plane
Sign In
Use the Distance Formula.
About14.47units
To determine the perimeter of the polygon, we must find the sum of its side lengths. This polygon has three vertices, so it is a triangle. Let's draw it in a coordinate plane.
Substitute ( - 1,3) & ( 3,0)
a-(- b)=a+b
Add and subtract terms
Calculate power
Add terms
Calculate root
Side | Coordinates | sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2) | Length |
---|---|---|---|
YZ | ( 3,0) ( - 1,- 2) |
sqrt(( - 1- 3)^2 + ( - 2- 0)^2) | sqrt(20) |
ZX | ( - 1,- 2) ( - 1,3) |
sqrt(( - 1-( - 1))^2 + ( 3-( - 2))^2) | 5 |
Substitute values
Use a calculator
Round to 2 decimal place(s)