Sign In
75^(∘)=45^(∘)+30^(∘) Knowing this, we can use the corresponding sum formula. Let's do each one at a time!
Rewrite 75^(∘) as 45^(∘)+30^(∘)
sin(α+β)=sin(α)cos(β)+cos(α)sin(β)
sin45^(∘)= sqrt(2)/2, cos45^(∘)= sqrt(2)/2
cos30^(∘)= sqrt(3)/2, sin30^(∘)= 1/2
Multiply fractions
sqrt(a)*sqrt(b)=sqrt(a* b)
Add fractions
Rewrite 75^(∘) as 45^(∘)+30^(∘)
cos(α+β)=cos(α)cos(β)-sin(α)sin(β)
cos45^(∘)= sqrt(2)/2, sin45^(∘)= sqrt(2)/2
cos30^(∘)= sqrt(3)/2, sin30^(∘)= 1/2
Multiply fractions
sqrt(a)*sqrt(b)=sqrt(a* b)
Subtract fractions
75^(∘)= 90^(∘) - 15^(∘) ⇓ 75^(∘) = 90^(∘) - (45^(∘)-30^(∘)) We will need to find the values of sin15^(∘) and cos15^(∘) in order to use difference formulas. Let's find each one at a time.
Rewrite 15^(∘) as 45^(∘)-30^(∘)
sin(α-β)=sin(α)cos(β)-cos(α)sin(β)
sin45^(∘)= sqrt(2)/2, cos45^(∘)= sqrt(2)/2
cos30^(∘)= sqrt(3)/2, sin30^(∘)= 1/2
Multiply fractions
sqrt(a)*sqrt(b)=sqrt(a* b)
Subtract fractions
Rewrite 15^(∘) as 45^(∘)-30^(∘)
cos(α-β)=cos(α)cos(β)+sin(α)sin(β)
cos45^(∘)= sqrt(2)/2, sin45^(∘)= sqrt(2)/2
cos30^(∘)= sqrt(3)/2, sin30^(∘)= 1/2
Multiply fractions
sqrt(a)*sqrt(b)=sqrt(a* b)
Add fractions
Rewrite 75^(∘) as 90^(∘)-15^(∘)
sin(α-β)=sin(α)cos(β)-cos(α)sin(β)
sin90^(∘)= 1, cos90^(∘)= 0
Zero Property of Multiplication
Rewrite 75^(∘) as 90^(∘)-15^(∘)
cos(α-β)=cos(α)cos(β)+sin(α)sin(β)
cos90^(∘)= 0, sin90^(∘)= 1
Zero Property of Multiplication