Big Ideas Math Algebra 2, 2014
BI
Big Ideas Math Algebra 2, 2014 View details
8. Using Sum and Difference Formulas
Continue to next subchapter

Exercise 5 Page 519

Practice makes perfect
a We are asked to use Sum Formulas to find the exact values of sin75^(∘) and cos75^(∘). Let's begin by writing 75^(∘) as the sum of two notable angles.

75^(∘)=45^(∘)+30^(∘) Knowing this, we can use the corresponding sum formula. Let's do each one at a time!

Finding sin75^(∘)

Let's take a look at the Sum Formula for sine. sin(a+b)=sinacosb+cosasinb Let's use this formula to find sin75^(∘).
sin75^(∘)
sin(45^(∘)+30^(∘))

sin(α+β)=sin(α)cos(β)+cos(α)sin(β)

sin45^(∘)cos30^(∘)+cos45^(∘)sin30^(∘)
Evaluate
sqrt(2)/2cos30^(∘)+ sqrt(2)/2sin30^(∘)
sqrt(2)/2* sqrt(3)/2+sqrt(2)/2* 1/2
sqrt(2)*sqrt(3)/4+sqrt(2)/4
sqrt(6)/4+sqrt(2)/4
sqrt(6)+sqrt(2)/4
The exact value of sin75^(∘) is sqrt(6)+sqrt(2)4.

Finding cos75^(∘)

We will now use the Sum Formula for cosine. cos(a+b)=cosacosb-sinasinb Let's use this formula to find cos75^(∘).
cos75^(∘)
cos(45^(∘)+30^(∘))

cos(α+β)=cos(α)cos(β)-sin(α)sin(β)

cos45^(∘)cos30^(∘)-sin45^(∘)sin30^(∘)
Evaluate
sqrt(2)/2cos30^(∘)- sqrt(2)/2sin30^(∘)
sqrt(2)/2* sqrt(3)/2-sqrt(2)/2* 1/2
sqrt(2)*sqrt(3)/4-sqrt(2)/4
sqrt(6)/4-sqrt(2)/4
sqrt(6)-sqrt(2)/4
The exact value of cos75^(∘) is sqrt(6)-sqrt(2)4.
b We are now asked to use difference formulas to find the exact values of sin75^(∘) and cos75^(∘). Notice that we have to find two differences!

75^(∘)= 90^(∘) - 15^(∘) ⇓ 75^(∘) = 90^(∘) - (45^(∘)-30^(∘)) We will need to find the values of sin15^(∘) and cos15^(∘) in order to use difference formulas. Let's find each one at a time.

Finding sin15^(∘)

We will use the Difference Formula for sine. sin(a-b)=sinacosb-cosasinbWe found that 15^(∘)=45^(∘)-30^(∘). Let's put this into the Difference Formula!
sin15^(∘)
sin(45^(∘)-30^(∘))

sin(α-β)=sin(α)cos(β)-cos(α)sin(β)

sin45^(∘)cos30^(∘)-cos45^(∘)sin30^(∘)
Evaluate
sqrt(2)/2*cos30^(∘)- sqrt(2)/2*sin30^(∘)
sqrt(2)/2* sqrt(3)/2-sqrt(2)/2* 1/2
sqrt(2)*sqrt(3)/4-sqrt(2)/4
sqrt(6)/4-sqrt(2)/4
sqrt(6)-sqrt(2)/4

Finding cos15^(∘)

We will now use the Difference Formula for Cosine. cos(a-b)=cosacosb+sinasinb Let's use it to find cos15^(∘).
cos15^(∘)
cos(45^(∘)-30^(∘))

cos(α-β)=cos(α)cos(β)+sin(α)sin(β)

cos45^(∘)cos30^(∘)+sin45^(∘)sin30^(∘)
Evaluate
sqrt(2)/2cos30^(∘)+ sqrt(2)/2sin30^(∘)
sqrt(2)/2* sqrt(3)/2+sqrt(2)/2* 1/2
sqrt(2)*sqrt(3)/4+sqrt(2)/4
sqrt(6)/4+sqrt(2)/4
sqrt(6)+sqrt(2)/4

Finding sin75^(∘)

Now that we have found the values of sin15^(∘) and cos15^(∘), we can use them to find sin75^(∘). Let's do it!
sin75^(∘)
sin(90^(∘)-15^(∘))

sin(α-β)=sin(α)cos(β)-cos(α)sin(β)

sin90^(∘)cos15^(∘)-cos90^(∘)sin15^(∘)
1*cos15^(∘)- 0*sin15^(∘)
cos15^(∘)
We found that the value of sin75^(∘) is the same as the value of cos15^(∘). sin75^(∘)=sqrt(6)+sqrt(2)/4 This is the same result we got in Part A.

Finding cos75^(∘)

Let's find cos75^(∘) by using the values we found for sin15^(∘) and cos15^(∘).
cos75^(∘)
cos(90^(∘)-15^(∘))

cos(α-β)=cos(α)cos(β)+sin(α)sin(β)

cos90^(∘)cos15^(∘)+sin90^(∘)sin15^(∘)
0*cos15^(∘)+ 1*sin15^(∘)
sin15^(∘)
We found that the value of cos75^(∘) is the same as the value of sin15^(∘). cos75^(∘)=sqrt(6)-sqrt(2)/4 This is the same result we got in Part A.