1. Right Triangle Trigonometry
Sign In
We want to evaluate six trigonometric functions of the angle θ. In a right triangle the hypotenuse is the side that is opposite the right angle. Therefore, in the given right triangle we have the hypotenuse and the opposite side. However, we are missing the adjacent side.
Let's find the values of the six trigonometric functions for angle θ. Remember to rationalize denominators if needed.
Function | Substitute | Simplify |
---|---|---|
sinθ=hypopp | sinθ=93 | sinθ=31 |
cosθ=hypadj | cosθ=962 | cosθ=322 |
tanθ=adjopp | tanθ=623 | tanθ=42 |
cscθ=opphyp | cscθ=39 | cscθ=3 |
secθ=adjhyp | secθ=629 | secθ=432 |
cotθ=oppadj | cotθ=362 | cotθ=22 |
ba=b⋅2a⋅2
a⋅a=a2
(a)2=a
Multiply
ba=b/3a/3
ba=b⋅2a⋅2
a⋅a=a2
(a)2=a
Multiply
ba=b/3a/3