Sign In
Use the expansion of (u+v)^2 and (u+v)^3
See solution.
Recall the expansions of the square of a binomial and the cube of a binomial. (u+v)^2&=u^2+2uv+v^2 (u+v)^3&=u^3+3u^2v+3uv^2+v^3 Let's use these with u=z and v=1,2,3,4, and5. We will need these in finding f(z+1), f(z+2), f(z+3), f(z+4), and f(z+5). First, let's see the quadratic expansions.
Expression | Expansion | Simplification |
---|---|---|
(z+ 1)^2 | z^2+2z( 1)+ 1^2 | z^2+2z+1 |
(z+ 2)^2 | z^2+2z( 2)+ 2^2 | z^2+4z+4 |
(z+ 3)^2 | z^2+2z( 3)+ 3^2 | z^2+6z+9 |
(z+ 4)^2 | z^2+2z( 4)+ 4^2 | z^2+8z+16 |
(z+ 5)^2 | z^2+2z( 5)+ 5^2 | z^2+10z+25 |
Let's also write the cubic expansions.
Expression | Expansion | Simplification |
---|---|---|
(z+ 1)^3 | z^3+3z^2( 1)+3z( 1^2)+ 1^3 | z^3+3z^2+3z+1 |
(z+ 2)^3 | z^3+3z^2( 2)+3z( 2^2)+ 2^3 | z^3+6z^2+12z+8 |
(z+ 3)^3 | z^3+3z^2( 3)+3z( 3^2)+ 3^3 | z^3+9z^2+27z+27 |
(z+ 4)^3 | z^3+3z^2( 4)+3z( 4^2)+ 4^3 | z^3+12z^2+48z+64 |
(z+ 5)^3 | z^3+3z^2( 5)+3z( 5^2)+ 5^3 | z^3+15z^2+75z+125 |
x= z+1
Substitute expressions
Distribute a & b & c
Commutative Property of Addition
Factor out z^2 & z
First-Order Differences |
---|
az^3+bz^2+cz+d |
3az^2+(3a+2b)z+(a+b+c) |
az^3+(3a+b)z^2+(3a+2b+c)z+(a+b+c+d) |
3az^2+(9a+2b)z+(7a+3b+c) |
az^3+(6a+b)z^2+(12a+4b+c)z+(8a+4b+2c+d) |
3az^2+(15a+2b)z+(19a+5b+c) |
az^3+(9a+b)z^2+(27a+6b+c)z+(27a+9b+3c+d) |
3az^2+(19a+2b)z+(37a+7b+c) |
az^3+(12a+b)z^2+(48a+8b+c)z+(64a+16b+4c+d) |
3az^2+(27a+2b)z+(61a+9b+c) |
az^3+(15a+b)z^2+(75a+10b+c)z+(125a+25b+5c+d) |
Let's now look for the second-order differences; the differences of the first-order differences.
Second-Order Differences |
---|
3az^2+(3a+2b)z+(a+b+c) |
6az+(6a+2b) |
3az^2+(9a+2b)z+(7a+3b+c) |
6az+(12a+2b) |
3az^2+(15a+2b)z+(19a+5b+c) |
6az+(18a+2b) |
3az^2+(19a+2b)z+(37a+7b+c) |
6az+(24a+2b) |
3az^2+(27a+2b)z+(61a+9b+c) |
Finally, let's find the third-order differences, the differences of the second-order differences.
Third-Order Differences |
---|
6az+(6a+2b) |
6a |
6az+(12a+2b) |
6a |
6az+(18a+2b) |
6a |
6az+(24a+2b) |
We can see that the third-order differences are indeed constant.