Big Ideas Math Algebra 2, 2014
BI
Big Ideas Math Algebra 2, 2014 View details
9. Modeling with Polynomial Functions
Continue to next subchapter

Exercise 24 Page 224

Use the expansion of (u+v)^2 and (u+v)^3

See solution.

Practice makes perfect

Recall the expansions of the square of a binomial and the cube of a binomial. (u+v)^2&=u^2+2uv+v^2 (u+v)^3&=u^3+3u^2v+3uv^2+v^3 Let's use these with u=z and v=1,2,3,4, and5. We will need these in finding f(z+1), f(z+2), f(z+3), f(z+4), and f(z+5). First, let's see the quadratic expansions.

Expression Expansion Simplification
(z+ 1)^2 z^2+2z( 1)+ 1^2 z^2+2z+1
(z+ 2)^2 z^2+2z( 2)+ 2^2 z^2+4z+4
(z+ 3)^2 z^2+2z( 3)+ 3^2 z^2+6z+9
(z+ 4)^2 z^2+2z( 4)+ 4^2 z^2+8z+16
(z+ 5)^2 z^2+2z( 5)+ 5^2 z^2+10z+25

Let's also write the cubic expansions.

Expression Expansion Simplification
(z+ 1)^3 z^3+3z^2( 1)+3z( 1^2)+ 1^3 z^3+3z^2+3z+1
(z+ 2)^3 z^3+3z^2( 2)+3z( 2^2)+ 2^3 z^3+6z^2+12z+8
(z+ 3)^3 z^3+3z^2( 3)+3z( 3^2)+ 3^3 z^3+9z^2+27z+27
(z+ 4)^3 z^3+3z^2( 4)+3z( 4^2)+ 4^3 z^3+12z^2+48z+64
(z+ 5)^3 z^3+3z^2( 5)+3z( 5^2)+ 5^3 z^3+15z^2+75z+125
Let's now find and simplify f(z), f(z+1), f(z+2), f(z+3), f(z+4), and f(z+5), as asked. To find f(z) we replace x with z in the given f(x). f(z)=az^3+bz^2+cz+d To find f(z+1), let's use the expansions of (z+1)^2 and (z+1)^3 we found above.
f(x)=ax^3+bx^2+cx+d
f( z+1)=a( z+1)^3+b( z+1)^2+c( z+1)+d
f(z+1)=a(z^3+3z^2+3z+1)+b(z^2+2z+1)+c(z+1)+d
â–Ľ
Simplify right-hand side
f(z+1)=az^3+3az^2+3az+a+bz^2+2bz+b+cz+c+d
f(z+1)=az^3+(3az^2+bz^2)+(3az+2bz+cz)+(a+b+c+d)
f(z+1)=az^3+(3a+b)z^2+(3a+2b+c)z+(a+b+c+d)
We can find the other expressions similarly. f(z)&=az^3+bz^2+cz+d f(z+1)&=az^3+(3a+b)z^2+(3a+2b+c)z+(a+b+c+d) f(z+2)&=az^3+(6a+b)z^2+(12a+4b+c)z+(8a+4b+2c+d) f(z+3)&=az^3+(9a+b)z^2+(27a+6b+c)z+(27a+9b+3c+d) f(z+4)&=az^3+(12a+b)z^2+(48a+8b+c)z+(64a+16b+4c+d) f(z+5)&=az^3+(15a+b)z^2+(75a+10b+c)z+(125a+25b+5c+d) In the following table we list these expressions and their differences. Remember that these differences are found by subtracting each term from the next. For example, the first difference in the table is found by simplifying f(z+1)-f(z).
First-Order Differences
az^3+bz^2+cz+d
3az^2+(3a+2b)z+(a+b+c)
az^3+(3a+b)z^2+(3a+2b+c)z+(a+b+c+d)
3az^2+(9a+2b)z+(7a+3b+c)
az^3+(6a+b)z^2+(12a+4b+c)z+(8a+4b+2c+d)
3az^2+(15a+2b)z+(19a+5b+c)
az^3+(9a+b)z^2+(27a+6b+c)z+(27a+9b+3c+d)
3az^2+(19a+2b)z+(37a+7b+c)
az^3+(12a+b)z^2+(48a+8b+c)z+(64a+16b+4c+d)
3az^2+(27a+2b)z+(61a+9b+c)
az^3+(15a+b)z^2+(75a+10b+c)z+(125a+25b+5c+d)

Let's now look for the second-order differences; the differences of the first-order differences.

Second-Order Differences
3az^2+(3a+2b)z+(a+b+c)
6az+(6a+2b)
3az^2+(9a+2b)z+(7a+3b+c)
6az+(12a+2b)
3az^2+(15a+2b)z+(19a+5b+c)
6az+(18a+2b)
3az^2+(19a+2b)z+(37a+7b+c)
6az+(24a+2b)
3az^2+(27a+2b)z+(61a+9b+c)

Finally, let's find the third-order differences, the differences of the second-order differences.

Third-Order Differences
6az+(6a+2b)
6a
6az+(12a+2b)
6a
6az+(18a+2b)
6a
6az+(24a+2b)

We can see that the third-order differences are indeed constant.