3. Rotations
Sign In
Use the transformation rule r_((90^(∘),O))(x,y)= (- y,x) to find the image of a point for a 90^(∘) rotation about the origin O.
Table:
Rotation About | Vertices |
---|---|
The Origin | L'(1,2) M'(2,6) N'(- 2,4) |
The Vertex L | L'(2,- 1) M'(3,3) N'(- 1,1) |
The Vertex M | L'(5,- 6) M'(6,- 2) N'(2,- 4) |
The Vertex N | L'(7,0) M'(8,4) N'(4,2) |
Let's draw △ LMN with vertices L(2,- 1), M(6,- 2), and N(4,2).
Then, we will rotate the vertices of the triangle 90^(∘) about the origin and about each vertex of △ LMN.
Let's use the rule for a 90^(∘) rotation about the origin O to find the images of each vertex of the triangle.
Point | (- y,x) | r_((90^(∘),O))(x,y)=(- y,x) |
---|---|---|
L( 2, - 1) | (- ( - 1), 2) | L'(1,2) |
M( 6, - 2) | (- ( - 2), 6) | M'(2,6) |
N( 4, 2) | (- 2, 4) | N'(- 2,4) |
Next, we will plot the points and connect them to graph △ L'M'N'.
Rotation About | Vertices |
---|---|
The Origin | L'(1,2) M'(2,6) N'(- 2,4) |
The Vertex L | L'(2,- 1) M'(3,3) N'(- 1,1) |
The Vertex M | L'(5,- 6) M'(6,- 2) N'(2,- 4) |
The Vertex N | L'(7,0) M'(8,4) N'(4,2) |