Pearson Geometry Common Core, 2011
PG
Pearson Geometry Common Core, 2011 View details
3. Rotations
Continue to next subchapter

Exercise 48 Page 566

Use the transformation rule r_((90^(∘),O))(x,y)= (- y,x) to find the image of a point for a 90^(∘) rotation about the origin O.

Table:

Rotation About Vertices
The Origin L'(1,2) M'(2,6) N'(- 2,4)
The Vertex L L'(2,- 1) M'(3,3) N'(- 1,1)
The Vertex M L'(5,- 6) M'(6,- 2) N'(2,- 4)
The Vertex N L'(7,0) M'(8,4) N'(4,2)
Practice makes perfect

Let's draw △ LMN with vertices L(2,- 1), M(6,- 2), and N(4,2).

Then, we will rotate the vertices of the triangle 90^(∘) about the origin and about each vertex of △ LMN.

Rotation About the Origin

Let's use the rule for a 90^(∘) rotation about the origin O to find the images of each vertex of the triangle.

Point (- y,x) r_((90^(∘),O))(x,y)=(- y,x)
L( 2, - 1) (- ( - 1), 2) L'(1,2)
M( 6, - 2) (- ( - 2), 6) M'(2,6)
N( 4, 2) (- 2, 4) N'(- 2,4)

Next, we will plot the points and connect them to graph △ L'M'N'.

Rotation About the Vertex L

To find the coordinates of the vertices of the image of △ LMN, we will use the graph of it. To find the image of M, we will draw a 90 ^(∘) angle with vertex L and side LM. Then, we will draw LM' with length LM. We are able to locate N' in the same way.
We have shown the image of △ LMN. The vertices of △ L'M'N' are as follows. r_((90^(∘),L))(L(2,- 1)) &= L'(2,- 1) r_((90^(∘),L))(M(6,- 2)) &= M'(3,3) r_((90^(∘),L))(N(4,2)) & = N'(- 1,1)

Rotation About the Vertex M

We will now find the images of the vertices of △ LMN for a 90^(∘) rotation about M. We will follow the same steps.
We have shown the image of △ LMN. The vertices of △ L'M'N' are as follows. r_((90^(∘),M))(L(2,- 1)) &= L'(5,- 6) r_((90^(∘),M))(M(6,- 2)) &= M'(6,- 2) r_((90^(∘),M))(N(4,2)) & = N'(2,- 4)

Rotation About the Vertex N

Finally, we will rotate △ LMN 90^(∘) about N.
We have shown the image of △ LMN. The vertices of △ L'M'N' are as follows. r_((90^(∘),M))(L(2,- 1)) &= L'(7,0) r_((90^(∘),M))(M(6,- 2)) &= M'(8,4) r_((90^(∘),M))(N(4,2)) & = N'(4,2) Let's make a table showing the coordinates of the vertices after each rotation.
Rotation About Vertices
The Origin L'(1,2) M'(2,6) N'(- 2,4)
The Vertex L L'(2,- 1) M'(3,3) N'(- 1,1)
The Vertex M L'(5,- 6) M'(6,- 2) N'(2,- 4)
The Vertex N L'(7,0) M'(8,4) N'(4,2)