McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
2. Parallelograms
Continue to next subchapter

Exercise 34 Page 491

Recall that vertical angles are congruent.

72

Practice makes perfect

Let's find the measure of ∠ DAC. It will take us a few steps.

Notice that ∠ AFD and ∠ BFC are vertical angles. According to the vertical angles theorem, they are congruent.

m∠ AFD = m ∠ BFC ⇕ m∠ AFD = 49 Since ∠ DAF and ∠ DAC measure the same, it will suffice to find m∠ DAF. To do that, we will use the following theorem.

Interior Angles Theorem

The sum of the interior angles of a triangle is 180^(∘).

Therefore, we can write an expression for the angles of △ DAF. m∠ AFD + m ∠ FDA + m ∠ DAF = 180 ⇕ 49 + 59 + m ∠ DAF = 180 Now, let's solve it!
49 + 59 + m ∠ DAF = 180
108 + m ∠ DAF = 180
m ∠ DAF = 72
Since ∠ DAF ≅ ∠ DAC, we have found that m∠ DAC = 72.