Sign In
Write the equations for two medians in slope-intercept form and solve the system of equations.
(1, 53), see solution.
We are given the coordinates of the triangle vertices A, B, and C. Let's plot these points on a coordinate plane and draw the triangle â–ł ABC.
Now, we can recall that a centroid of a triangle is a point of intersection of the triangle medians. Let's draw two medians and find their point of intersection.
Substitute ( 2,5) & ( 4,- 3)
a+(- b)=a-b
Add and subtract terms
Calculate quotient
Substitute ( - 3,3) & ( 3,1)
a-(- b)=a+b
Add and subtract terms
Put minus sign in front of fraction
a/b=.a /2./.b /2.
Substitute ( - 3,3) & ( 4,- 3)
a+(- b)=a-b
Add and subtract terms
Calculate quotient
Substitute ( 2,5) & ( 12,0)
a = 2* a/2
Subtract terms
- a/- b=a/b
a/b=a * 2/b * 2
x= 2, y= 5
a/c* b = a* b/c
LHS-20/3=RHS-20/3
a = 3* a/3
Subtract fractions
Rearrange equation
(II): a+(- b)=a-b
(I): y= 103x- 53
(I): LHS+ 13x=RHS+ 13x
(I): LHS+ 53=RHS+ 53
(I): a/b=a * 3/b * 3
(I): Add fractions
(I): .LHS / 113.=.RHS / 113.
(II): x= 1
(II): a * 1=a
(II): Subtract fractions