Sign In
Find the slope of each line and then use the point-slope form to find the equations. To find P, find the intersection point of two lines and check that this point lies on the third line.
See solution.
We will follow the hint and split the proof into three parts: finding the equation of the lines containing the medians, finding the coordinates of P, and finding the distances.
Substitute ( 0,0) & ( 3b+3a,3c)
Substitute values
Subtract terms
Points | m=y_2-y_1/x_2-x_1 | y-y_1 = m(x-x_1) | Equation |
---|---|---|---|
B(6b,6c) and S(3a,0) | m_2 &= 0 - 6c/3a - 6b &= 2c/2b-a | y-0 = 2c/2b-a(x-3a) | BS: y = 2c/2b-a(x-3a) |
C(6a,0) and Q(3b,3c) | m_3 &= 3c - 0/3b - 6a &= c/b-2a | y-0 = c/b-2a(x-6a) | CQ: y = c/b-2a(x-6a) |
(II): y= c/b+ax
(I): x= 2b+2a
x= 2b+2a, y= 2c
Subtract terms
Factor out 2
Cancel out common factors
Substitute ( 0,0) & ( 3b+3a,3c)
Substitute ( 0,0) & ( 2b+2a,2c)
Points | d = sqrt((x_2-x_1)^2 + (y_2-y_1)^2) | Length |
---|---|---|
B(6b,6c) and S(3a,0) | BS = sqrt((3a-6b)^2+(0-6c)^2) | BS = 3sqrt((a-2b)^2 + 4c^2) |
B(6b,6c) and P(2b+2a,2c) | BP = sqrt((2b+2a-6b)^2+(2c-6c)^2) | BP = 2sqrt((a-2b)^2 + 4c^2) |
C(6a,0) and Q(3b,3c) | CQ = sqrt((3b-6a)^2+(3c-0)^2) | CQ = 3sqrt((b-2a)^2 + c^2) |
C(6a,0) and P(2b+2a,2c) | CP = sqrt((2b+2a-6a)^2+(2c-0)^2) | CP = 2sqrt((b-2a)^2 + c^2) |
Next, we divide the BP and CP by 2 and then substitute the resulting equations into BS and CQ respectively. BP/2 = sqrt((a-2b)^2 + 4c^2) & ⇒ BP = 2/3BS [0.3cm] CP/2 = sqrt((b-2a)^2 + c^2) & ⇒ CP = 2/3CQ In consequence, we can affirm that P is two thirds of the distance from each vertex to the midpoint of the opposite side, which proves the Centroid Theorem.