McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
2. Complex Numbers
Continue to next subchapter

Exercise 58 Page 183

To simplify the given expression, we have to multiply the numerator and the denominator by the complex conjugate of the denominator.

7/9-4sqrt(2)/9i

Practice makes perfect
Recall that the number pairs a+bi and a-bi are complex conjugates. To write the complex conjugate of a complex number, we only change the sign of the imaginary part. Let's do it for the denominator of our expression. Denominator:& 4 + isqrt(2) Complex Conjugate:& 4 - isqrt(2)The product of complex conjugates is a real number. To simplify the given expression, we will multiply the numerator and the denominator by the complex conjugate of the denominator. 4-isqrt(2)/4+isqrt(2)*4-isqrt(2)/4-isqrt(2) This process is also known as rationalizing the denominator. Doing so will simplify the quotient.
4-isqrt(2)/4+isqrt(2)*4-isqrt(2)/4-isqrt(2)
(4-isqrt(2))(4-isqrt(2))/(4+isqrt(2))(4-isqrt(2))
â–Ľ
Simplify numerator
4(4-isqrt(2))-isqrt(2)(4-isqrt(2))/(4+isqrt(2))(4-isqrt(2))
16-4isqrt(2)-isqrt(2)(4-isqrt(2))/(4+isqrt(2))(4-isqrt(2))
16-4isqrt(2)-4isqrt(2)+2i^2/(4+isqrt(2))(4-isqrt(2))
16-4isqrt(2)-4isqrt(2)+2(- 1)/(4+isqrt(2))(4-isqrt(2))
16-4isqrt(2)-4isqrt(2)-2/(4+isqrt(2))(4-isqrt(2))
14-8isqrt(2)/(4+isqrt(2))(4-isqrt(2))
â–Ľ
Simplify denominator
14-8isqrt(2)/16-2i^2
14-8isqrt(2)/16-2(-1)
14-8isqrt(2)/16+2
14-8isqrt(2)/18
7-4isqrt(2)/9
7/9-4isqrt(2)/9
7/9-4sqrt(2)i/9
7/9-4sqrt(2)/9i