McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
Practice Test
Continue to next subchapter

Exercise 17 Page 161

Identify a, b, and c.

- 3, 2.5

We will use the Quadratic Formula to solve the given quadratic equation. ax^2+ bx+ c=0 ⇕ x=- b± sqrt(b^2-4 a c)/2 a We first need to identify the values of a, b, and c. 2x^2+x-15=0 ⇕ 2x^2+ 1x+( - 15)=0 We see that a= 2, b= 1, and c= - 15. Let's substitute these values into the Quadratic Formula.
x=- b±sqrt(b^2-4ac)/2a
x=- 1±sqrt(1^2-4( 2)( - 15))/2( 2)
â–Ľ
Solve for x and Simplify
x=- 1±sqrt(1-4(2)(- 15))/2(2)
x=- 1±sqrt(1-8(- 15))/4
x=- 1±sqrt(1+120)/4
x=- 1±sqrt(121)/4
x=- 1± 11/4
The solutions for this equation are x= - 1 ± 114. Let's separate them into the positive and negative cases.
x=- 1 ± 11/4
x_1=- 1 + 11/4 x_2=- 1 - 11/4
x_1=10/4 x_2=- 12/4
x_1=2.5 x_2=- 3

Using the Quadratic Formula, we found that the solutions of the given equation are x_1=- 3 and x_2=2.5.