{{ toc.name }}
{{ toc.signature }}
{{ toc.name }} {{ 'ml-btn-view-details' | message }}
{{ stepNode.name }}
{{ 'ml-toc-proceed' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }} {{ ability.displayTitle }}
{{ 'ml-heading-lesson-settings' | message }}
{{ 'ml-lesson-show-solutions' | message }}
{{ 'ml-lesson-show-hints' | message }}
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}

Rule

Double-Angle Identities

The double-angle identities materialize when two angles with the same measure are substituted into the angle sum identities.
These identities simplify calculations when evaluating trigonometric functions of twice an angle measure.

Proof

Double-Angle Identities
Start by writing the Angle Sum Identity for sine and cosine.
Let and With this, becomes Then, these two formulas can be rewritten in terms of

Sine Identity

Approaching the first equation, the Commutative Property of Multiplication can be applied to the second term of its right-hand side. Then, by adding the terms on the right-hand side of this equation, the formula for is obtained.

Cosine Identities

Approaching the second equation, the Product of Powers Property can be used to rewrite its right-hand side. By doing this, the first identity for the cosine of the double of an angle is obtained.

Now, recall that, by the Pythagorean Identity, the sine square plus the cosine square of the same angle equals From this identity, two different equations can be set.
Next, substitute Equation (I) into the first identity for the cosine.
Substitute for and simplify
That way, the second identity for the cosine has been obtained. To obtain the third cosine identity, substitute Equation (II) into the first identity for the cosine.
Substitute for and simplify

Tangent Identity

To prove the tangent identity, start by rewriting in terms of sine and cosine.
Next, substitute the first sine identity in the numerator and the first cosine identity in the denominator.
Then, divide the numerator and denominator by
Finally, simplifying the right-hand side the tangent identity will be obtained.
Simplify right-hand side

Extra

Calculating

To calculate the exact value of these steps can be followed.

  1. To be able to use the double-angle identities, the angle needs to be rewritten as multiplied by another angle. Therefore, rewrite as
  2. Use the second formula for the cosine of twice an angle.
  3. Based on the trigonometric ratios of common angles, it is known that
Following these three steps, the value of can be found.

Simplify