Theorems About Lines and Angles
Rule

Converse Corresponding Angles Theorem

If two lines and a transversal form corresponding angles that are congruent, then the lines are parallel.
Two parallel lines intersected by a transversal forming four pairs of corresponding angles
Based on the characteristics of the diagram, the following relation holds true.

If or then

Proof

This theorem can be proven by an indirect proof. Let and be two lines intersected by a transversal line forming corresponding congruent angles and

Two parallel lines intersected by a transversal
Since the goal is to prove that is parallel to , it will be temporarily assumed that and are not parallel.
By the Parallel Postulate, there exists a line parallel to that passes through the point of intersection between and This line forms and
Two parallel lines intersected by a transversal
By the Angle Addition Postulate, is equal to the sum of and
Since and are parallel lines that are cut by a transversal, by the Corresponding Angles Theorem, and are congruent. By the definition of congruence, these angles have the same measure.
By the Substitution Property of Equality, can be substituted for into the equation for
From the above equation and since is a positive number, it can be concluded that is greater than
This contradicts the given fact that and are congruent. The contradiction came from assuming that and are not parallel lines. Therefore, and must be parallel lines.
Loading content