Sign In
Therefore, we should identify the y-coordinate of each position around the Ferris wheel. To do this we can use the unit circle. Notice that - 45^(∘) and 315^(∘) have the same relative positions on the unit circle. This is also true for a rotation of 0^(∘) and 360^(∘).
As previously argued, the unit circle has a radius of 1 unit. Therefore, to determine the position from the center of the Ferris wheel, we have to multiply each y-coordinate with its radius. r|rcl - 45^(∘) & - 1/sqrt(2)(30) -5pt & = & -5pt - 21.21 feet [1em] 0^(∘) & 0(30) -5pt & = & -5pt 0 feet [0.5em] 45^(∘) & 1/sqrt(2)(30) -5pt & = & -5pt 21.21 feet [1em] 90^(∘) & 1(30) -5pt & = & -5pt 30 feet [0.5em] 135^(∘) & 1/sqrt(2)(30) -5pt & = & -5pt 21.21 feet & [1em] 180^(∘) & 0(30) -5pt & = & -5pt 0 feet [0.5em] 225^(∘) & - 1/sqrt(2)(30) -5pt & = & -5pt - 21.21 feet [1em] 270^(∘) & - 1(30) -5pt & = & -5pt - 30 feet [0.5em] Now we can complete the table. |l|c|c|c|c|c|c|c|c|c| x (angle) & - 90^(∘) & - 45^(∘) & 0^(∘) & 45^(∘) & 90^(∘) & 135^(∘) & 180^(∘) & 225^(∘) & 270^(∘) y (height) & - 30' & - 21.21' & 0' & 21.21' & 30' & 21.21' & 0 & - 21.21' & - 30'
Finally, we will connect the points with a smooth curve.
Notice that this curve resembles a sine curve, but with an amplitude of 30. Therefore, the equation that fits the County Ferris Wheel ride is y=30sin x.