Big Ideas Math Integrated I, 2016
BI
Big Ideas Math Integrated I, 2016 View details
4. Solving Exponential Equations
Continue to next subchapter

Exercise 14 Page 303

Rewrite the terms so that they have a common base.

x=-4

Practice makes perfect
To solve the given exponential equation, we will start by rewriting the terms so that they have a common base.
(1/4)^x = 256

1/a=a^(- 1)

(4^(-1))^x = 256
4^(-1* x) = 256
4^(- x) = 256
4^(- x) = 4^4
Now, we have two equivalent expressions with the same base. If both sides of the equation are equal, the exponents must also be equal. 4^(- x) = 4^4 ⇔ - x = 4 Finally, we will solve the equation - x = 4.
- x = 4
x = 4/-1
x = -4/1
x = -4
To check our answer, we will substitute -4 for x in the given equation.
(1/4)^x = 256
(1/4)^(-4) ? = 256

1/a=a^(- 1)

(4^(-1))^(-4) ? = 256
4^(-1(-4)) ? = 256
4^4 ? = 256
256 = 256 âś“
Since substituting -4 for x in the given equation produces a true statement, x=-4 is the solution to our equation.