Big Ideas Math Integrated III
BI
Big Ideas Math Integrated III View details
2. Using Sum and Difference Formulas
Continue to next subchapter

Exercise 4 Page 477

We are asked to explain how to evaluate trigonometric expressions of the sum or difference of two angles. Let's begin with something simpler. We already know the values of the sine and cosine for certain angles. These can be summarized in the following table.

sin θ cos θ
θ=0^(∘) 0 1
θ=30^(∘) 1/2 sqrt(3)/2
θ=45^(∘) sqrt(2)/2 sqrt(2)/2
θ=60^(∘) sqrt(3)/2 1/2
θ=90^(∘) 1 0
In order to use these values we need to write the requested angle as a sum or difference of the known angles. For example, consider the following expression. sin15^(∘) We do not know the value of the sine of 15^(∘), but we can notice that it can be written as the difference of two of our known angles. 15^(∘)=45^(∘)-30^(∘) Next, we identify the corresponding difference formula. Since we want to evaluate sin15^(∘), we will use the difference formula for sine. sin(a-b)=sinacosb-cosasinb Let's use this formula!
sin15^(∘)
sin(45^(∘)-30^(∘))

sin(α-β)=sin(α)cos(β)-cos(α)sin(β)

sin45^(∘)cos30^(∘)-cos45^(∘)sin30^(∘)
Evaluate
sqrt(2)/2*cos30^(∘)- sqrt(2)/2*sin30^(∘)
sqrt(2)/2* sqrt(3)/2-sqrt(2)/2*sin30^(∘)
sqrt(2)/2*sqrt(3)/2-sqrt(2)/2* 1/2
sqrt(2)*sqrt(3)/4-sqrt(2)/4
sqrt(6)-sqrt(2)/4
The exact value of sin15^(∘) is sqrt(6)-sqrt(2)4.