2. Using Sum and Difference Formulas
Sign In
We are asked to explain how to evaluate trigonometric expressions of the sum or difference of two angles. Let's begin with something simpler. We already know the values of the sine and cosine for certain angles. These can be summarized in the following table.
sin θ | cos θ | |
---|---|---|
θ=0^(∘) | 0 | 1 |
θ=30^(∘) | 1/2 | sqrt(3)/2 |
θ=45^(∘) | sqrt(2)/2 | sqrt(2)/2 |
θ=60^(∘) | sqrt(3)/2 | 1/2 |
θ=90^(∘) | 1 | 0 |
Rewrite 15^(∘) as 45^(∘)-30^(∘)
sin(α-β)=sin(α)cos(β)-cos(α)sin(β)
sin45^(∘)= sqrt(2)/2, cos45^(∘)= sqrt(2)/2
cos30^(∘)= sqrt(3)/2
sin30^(∘)= 1/2
Multiply fractions
sqrt(a)* sqrt(a)= a