1. Perpendicular and Angle Bisectors
Sign In
The perpendicular bisector of a segment is the perpendicular line through its midpoint.
y=7/4x-33/4
We have to find the equation of the perpendicular bisector of the segment whose endpoints are Y(10,-7) and Z(-4,1). We will do this in three steps.
Let's go for it!
Substitute ( 10,-7) & ( -4,1)
a+(- b)=a-b
Add and subtract terms
Calculate quotient
Substitute ( 10,-7) & ( -4,1)
a-(- b)=a+b
Add and subtract terms
Put minus sign in front of fraction
a/b=.a /2./.b /2.
LHS * 7=RHS* 7
Cancel out common factors
.LHS /(-4).=.RHS /(-4).
- a/- b=a/b
Substitute values
a-(- b)=a+b
Distribute 7/4
LHS-3=RHS-3