1. Perpendicular and Angle Bisectors
Sign In
The perpendicular bisector of a segment is the perpendicular line through its midpoint.
y=-2/3x+22/3
We have to find the equation of the perpendicular bisector of the segment whose endpoints are Q(-2,0) and R(6,12). We will do this in three steps.
Let's go for it!
Substitute ( -2,0) & ( 6,12)
Add terms
Calculate quotient
Substitute ( -2,0) & ( 6,12)
a-(- b)=a+b
Add and subtract terms
a/b=.a /4./.b /4.
LHS * 2=RHS* 2
2 * a/2= a
.LHS /3.=.RHS /3.
Put minus sign in front of fraction
Substitute values
Distribute -2/3
LHS+6=RHS+6
- a(- b)=a* b
a = 3* a/3
Add fractions