2. Measuring and Constructing Segments
Sign In
From the exercise, we know that the length of RS can be expressed as 2x+10. Let's mark it on our picture.
Now, we will do the same thing with the rest of the information. The length of ST is x−4 and RT is 21.
Substitute expressions
Remove parentheses
Add terms
Distance | x=5 | Length |
---|---|---|
RS | 2(5)+10 | 20 |
ST | 5−4 | 1 |
RT | 21 | 21 |
Substitute expressions
Remove parentheses
Add and subtract terms
Distance | x=12 | Length |
---|---|---|
RS | 3(12)−16 | 20 |
ST | 4(12)−8 | 40 |
RT | 60 | 60 |
Substitute expressions
Remove parentheses
Subtract term
Distance | x=7 | Length |
---|---|---|
RS | 2(7)−8 | 6 |
ST | 11 | 11 |
RT | 7+10 | 17 |
Substitute expressions
Remove parentheses
Add terms
LHS+14=RHS+14
LHS−4x=RHS−4x
LHS/4=RHS/4
Rearrange equation
Distance | x=6 | Length |
---|---|---|
RS | 4(6)−9 | 15 |
ST | 19 | 19 |
RT | 8(6)−14 | 34 |