Pearson Geometry Common Core, 2011
PG
Pearson Geometry Common Core, 2011 View details
5. Indirect Proof
Continue to next subchapter

Exercise 40 Page 322

Use the Distance Formula to find the lengths of each side.

Ordered Sides: AB, BC, CA
Graph:

Practice makes perfect

To compare the side lengths of the triangle, we first need to graph the given vertices, A(3,0), B(4,3), and C(8,0). Then we can connect the vertices with straight lines.

We will find the length of each side using the Distance Formula. Let's start with finding the length of AB. The endpoints of AB are A( 3, 0) and B( 4, 3).
AB=sqrt((x_2-x_1)^2+(y_2-y_1)^2)
AB=sqrt(( 4- 3)^2+( 3- 0)^2)
Calculate AB
AB=sqrt(1^2+3^2)
AB=sqrt(1+9)
AB=sqrt(10)
AB=3.16227766017...
AB ≈ 3.2
Let's repeat this procedure for other sides
Points Distance Formula Approximate Value
A( 3, 0) and B( 4, 3) AB = sqrt(( 4- 3)^2+( 3- 0)^2) 3.2
B( 4, 3) and C( 8, 0) BC = sqrt(( 8- 4)^2+( 0- 3)^2) 5
C( 8, 0) and A( 3, 0) CA=sqrt(( 8- 3)^2 + ( 0- 0)^2) 5

Knowing the lengths of each side, we can order them from shortest to longest. Notice that this triangle has two sides that are congruent. 3.2 < 5 ≤ 5 ⇓ AB < BC ≤ CA