Chapter Review
Sign In
Use the Midpoint Formula to find the midpoints.
See solution.
We will first draw △ ABC using the given vertices A(0,0), B(2,2), and C(5,-1).
Substitute ( 0,0) & ( 5,-1)
We have found the coordinates of L as (2.5,-0.5). We can find M, the midpoint of BC, in the same way.
L | (x_1+x_2/2,y_1+y_2/2) | A&( 0, 0) C&( 5, -1) | (0+ 5/2,0+( -1)/2) | L(2.5, -0.5) |
---|---|---|---|---|
M | (x_1+x_2/2,y_1+y_2/2) | B&( 2, 2) C&( 5, -1) | (2+ 5/2,2+( -1)/2) | M(3.5, 0.5) |
The coordinates of M are (3.5,0.5). Let's place the midpoints on the triangle and draw LM.
Substitute ( 0,0) & ( 2,2)
Subtract terms
Calculate quotient
m_1 | m_1=y_2-y_1/x_2-x_1 | A&( 0, 0) B&( 2, 2) | m_1=2- 0/2- 0 | m_1=1 |
---|---|---|---|---|
m_2 | m_2=y_2-y_1/x_2-x_1 | M&( 3.5, 0.5) L&( 2.5, -0.5) | m_2=-0.5- 0.5/2.5- 3.5 | m_2=1 |
Substitute ( 0,0) & ( 2,2)
Subtract terms
Calculate power
Add terms
Split into factors
sqrt(a* b)=sqrt(a)*sqrt(b)
Calculate root
AB | AB=sqrt((x_2-x_1)^2+(y_2-y_1)^2) | A&( 0, 0) B&( 2, 2) | AB=sqrt(( 2- 0)^2+( 2- 0)^2) | AB=2sqrt(2) |
---|---|---|---|---|
LM | LM=sqrt((x_2-x_1)^2+(y_2-y_1)^2) | L&( 2.5, -0.5) M&( 3.5, 0.5) | LM=sqrt(( 3.5- 2.5)^2+( 0.5- -0.5)^2) | LM=sqrt(2) |
LM= sqrt(2), AB= 2sqrt(2)
Multiply