1. Classifying Triangles
Sign In
Use the Distance Formula.
Side Lengths: XY=2sqrt(2), YZ=2, XZ=2
Type: Isosceles
We can use the given coordinates of the vertices and the Distance Formula to find the length of each side.
Substitute ( 3,- 2) & ( 1,- 4)
a-(- b)=a+b
Add and subtract terms
(- a)^2=a^2
Calculate power
Add terms
Split into factors
sqrt(a* b)=sqrt(a)*sqrt(b)
Calculate root
Side | Expression | Length |
---|---|---|
XY | sqrt((1-3)^2+(- 4-(- 2))^2) | XY=2sqrt(2) |
YZ | sqrt((3-1)^2+(- 4-(- 4))^2) | YZ=2 |
XZ | sqrt((3-3)^2+(- 4-(- 2))^2) | ZX=2 |
Notice that two of the lengths of the sides are the same. Therefore, â–ł XYZ is isosceles.