McGraw Hill Glencoe Geometry, 2012
MH
McGraw Hill Glencoe Geometry, 2012 View details
1. Classifying Triangles
Continue to next subchapter

Exercise 45 Page 242

Use the Distance Formula.

Side Lengths: XY=2sqrt(2), YZ=2, XZ=2
Type: Isosceles

Practice makes perfect

We can use the given coordinates of the vertices and the Distance Formula to find the length of each side.

We can start with the length of XY.
XY=sqrt((x_2-x_1)^2+(y_2-y_1)^2)
XY=sqrt(( 1- 3)^2+( - 4-( - 2))^2)
â–Ľ
Simplify right-hand side
XY=sqrt((1-3)^2+(- 4+2)^2)
XY=sqrt((- 2)^2+(- 2)^2)
XY=sqrt(2^2+2^2)
XY=sqrt(4+4)
XY=sqrt(8)
XY=sqrt(4 * 2)
XY=sqrt(4) * sqrt(2)
XY=2sqrt(2)
We can find the length of the other sides in the same way.
Side Expression Length
XY sqrt((1-3)^2+(- 4-(- 2))^2) XY=2sqrt(2)
YZ sqrt((3-1)^2+(- 4-(- 4))^2) YZ=2
XZ sqrt((3-3)^2+(- 4-(- 2))^2) ZX=2

Notice that two of the lengths of the sides are the same. Therefore, â–ł XYZ is isosceles.