{{ tocSubheader }}
| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
The following equations hold true with regard to △ABC.
a2=b2+c2−2bccos(A)
b2=a2+c2−2accos(B)
c2=a2+b2−2abcos(C)
x2+h2=c2
Commutative Property of Addition
The altitude of the triangle is the perpendicular segment from B to the extension of the base AC. Let D be the endpoint of this segment and x be the distance from D to A.
(a+b)2=a2+2ab+b2
Commutative Property of Addition