{{ toc.name }}
{{ toc.signature }}
{{ toc.name }} {{ 'ml-btn-view-details' | message }}
{{ stepNode.name }}
Proceed to next lesson
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.introSlideInfo.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }}

{{ 'ml-heading-lesson-settings' | message }}

{{ 'ml-lesson-show-solutions' | message }}
{{ 'ml-lesson-show-hints' | message }}
{{ 'ml-lesson-number-slides' | message : article.introSlideInfo.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.introSlideInfo.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}

Concept

Altitude of a Triangle

An altitude or height of a triangle is a line segment between one of the vertices of the triangle and its opposite side, forming a right angle with the opposite side. The height of a triangle also refers to the length of the altitude.

An altitude can be created using any of the vertices of a triangle and its opposite side. Therefore, three altitudes can be drawn in any triangle. Additionally, the three altitudes intersect at the same point called the orthocenter.

For an obtuse triangle, it is possible to create an altitude using a segment that contains the opposite side rather than using the opposite side itself.