Reference

Symmetry in Functions

Concept

Axis of Symmetry

An axis of symmetry is the line that divides the graph of a function in two mirrored images. For example, the graph of a quadratic function is a parabola that has an axis of symmetry parallel to the axis and passes through its vertex.
A parabola and its Axis of symmetry
It is also possible for a function to have an axis of symmetry which is not vertical. The following graph shows an example of this.
The graph of the example function has an inclined axis of symmetry

If a function's axis of symmetry is the axis, it is said that it is an even function.

Function 0.8*x^4-3*x^2+1.5 is symmetric with respect to the y-axis.

The concept of an axis of symmetry extends beyond graphs of functions.

Any geometric figure can have an axis of symmetry if there exists a line that divides it into congruent, mirror-image halves.
Concept

Even Function

An even function is a function for which the value of is equal to the value of for all the values in its domain. That is, opposite inputs have the same output.

The graph of an even function is symmetric about the axis. The functions  and are two examples of even functions.
Graphs of f(x)=x^2 and graph of g(x)=2|x|
Notice that if a function is even and the point is on the graph, then the point is also on the graph. A function can be even, odd, or neither.

Extra

Determining If a Function is Even
To determine algebraically whether a function is even, substitute into the function rule and simplify. If the resulting expression is equal to then the function is even; otherwise, it is not. For example, consider the following function.
Substitute for and simplify.
Since the given function is even.
Concept

Odd Function

An odd function is a function for which the value of is equal to the value of for all the values in its domain. It is like if the function allows moving the negative sign from the input to the output.

The graph of an odd function is symmetric about the origin, meaning that the graph looks the same after a rotation about the origin. The functions  and are two examples of odd functions.
Graphs of f(x)=x and graph of g(x)=x^3
Notice that if a function is odd and the point is on the graph, then the point is also on the graph. A function can be odd, even, or neither.

Extra

Determining If a Function is Odd
To determine algebraically whether a function is odd, substitute into the function rule and simplify. If the resulting expression is equal to then the function is odd; otherwise, it is not. For example, consider the following function.
Substitute for and simplify.
Since the given function is odd.



Loading content