Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Geometric Mean

Concept

Geometric Mean

Unlike a arithmetic mean, the geometric mean takes the product of the values and then the nnth root, where nn is the number of values. Mean=a1a2...ann \text{Mean}=\sqrt[n]{a_1\cdot a_2\cdot ...\cdot a_n} For example, the geometric mean of 2,2, 44 and 88 is: 2483=643=4. \sqrt[3]{2\cdot4\cdot8}=\sqrt[3]{64}=4. When calculating the geometric mean of two values, it can be interpret as a rectangle and square with the same area.

The side length of the square can be calculated by taking the square root of the area. s=24.5=9=3 s=\sqrt{2\cdot4.5}=\sqrt{9}=3 Therefore, the geometric mean of 22 and 4.54.5 is 3.3.