Big Ideas Math: Modeling Real Life, Grade 8
BI
Big Ideas Math: Modeling Real Life, Grade 8 View details
4. Congruent Figures
Continue to next subchapter

Exercise 1 Page 67

When a point with coordinates (x,y) is rotated 90^(∘) counterclockwise about the origin, the coordinates of its image are (- y, x).

A'(- 3,1), B'(- 5,2), C'(- 5,3), D'(- 3,2)

Practice makes perfect

A rotation is a transformation about a fixed point called center of rotation. Each point of the original figure and its image are the same distance from the center of rotation. When a counterclockwise rotation is performed about the origin, the coordinates of the image can be written in relation to the coordinates of the preimage.

Rotations About the Origin
90^(∘) Rotation 180^(∘) Rotation 270^(∘) Rotation

ccc Preimage & & Image [0.5em] (x,y) & → & (- y, x)

ccc Preimage & & Image [0.5em] (x,y) & → & (- x,- y)

ccc Preimage & & Image [0.5em] (x,y) & → & (y,- x)

We want to rotate a quadrilateral 90^(∘) counterclockwise about the origin. Therefore, we can use the coordinate changes shown in the above table to determine the coordinates of the image of each vertex. ccc Preimage & & Image (x,y) & → & (- y, x) [0.5em] A( 1,3) & & A'(- 3,1) [0.5em] B(2,5) & & B'(- 5, 2) [0.5em] C(3,5) & & C'(- 5,3) [0.5em] D(2,3) & & D'(- 3,2) We can now plot the obtained points and draw the image of the given quadrilateral after the rotation!
preimage and image

Extra

Visualizing the Rotation
Let's rotate ABCD 90^(∘) counterclockwise about the origin so that we can see how it is mapped onto A'B'C'D'.
rotate