Sign In
Use the Distance Formula.
Distances: AB=5sqrt(2), CD=10, EF=sqrt(85), GH=4, JK=sqrt(34), LM=5
Ordered Segments: CD, EF, AB, JK, LM, GH
We will begin by finding the distances between each pair of points. Then, we can order the line segments from longest to shortest.
Substitute ( - 6,1) & ( - 1,6)
a-(- b)=a+b
Add and subtract terms
Calculate power
a+a=2a
sqrt(a* b)=sqrt(a)*sqrt(b)
Calculate root
Multiply
We found that the distance between the points A and B is 5sqrt(2). Let's calculate the distances between the other pairs of points in the same way.
Points (x_1,y_1), (x_2,y_2) | sqrt((x_2-x_1)^2+(y_2-y_1)^2) | Simplify | Distance |
---|---|---|---|
a. A( - 6, 1), B( - 1, 6) | sqrt(( - 1-( - 6)) ^2 +( 6- 1)^2) | sqrt(50) | AB=5sqrt(2) |
b. C( - 5, 8), D( 5, 8) | sqrt(( 5-( - 5)) ^2 +( 8- 8)^2) | sqrt(100) | CD=10 |
c. E( 2, 7), F( 4, - 2) | sqrt(( 4- 2)^2+( - 2- 7) ^2) | sqrt(85) | EF=sqrt(85) |
d. G( 7, 3), H( 7, - 1) | sqrt(( 7- 7)^2+( - 1- 3) ^2) | sqrt(16) | GH=4 |
e. J( - 4, - 2), K( 1, - 5) | sqrt(( 1-( - 4))^2+( - 5-( - 2)) ^2) | sqrt(34) | JK=sqrt(34) |
f. L( 3, - 8), M( 7, - 5) | sqrt(( 7- 3)^2+( - 5-( - 8)) ^2) | sqrt(25) | LM=5 |
Finally, we will order the line segments from longest to shortest. To compare their lengths we will focus only on the radical expressions in the third column of our table. Comparing them is equivalent to comparing the values under the radicals. 100>85>50>34>25>16 ⇕ sqrt(100)>sqrt(85)>sqrt(50)>sqrt(34)>sqrt(25)>sqrt(16) Knowing this, we can order the segments from longest to shortest.
Length | Segment |
---|---|
sqrt(100) | CD |
sqrt(85) | EF |
sqrt(50) | AB |
sqrt(34) | JK |
sqrt(25) | LM |
sqrt(16) | GH |