5. Analyzing Lines of Fit
Sign In
Make a table of the residual values and then graph them on a scatter plot.
Yes, see solution.
x | y | y=6x+4 | y-value From Model | Residual |
---|---|---|---|---|
1 | 13 | 6( 1)+4 | 10 | 13-10= 3 |
2 | 14 | 6( 2)+4 | 16 | 14-16= -2 |
3 | 23 | 6( 3)+4 | 22 | 23-22= 1 |
4 | 26 | 6( 4)+4 | 28 | 26-28= -2 |
5 | 31 | 6( 5)+4 | 34 | 31-34= -3 |
6 | 42 | 6( 6)+4 | 40 | 42-40= 2 |
7 | 45 | 6( 7)+4 | 46 | 45-46= -1 |
8 | 52 | 6( 8)+4 | 52 | 52-52= 0 |
9 | 62 | 6( 9)+4 | 58 | 62-58= 4 |
Now we can create a scatter plot using the given x-values and our residuals. Remember, if the model is a good fit for the data, the scatter plot will be evenly distributed above and below the x-axis. Also, there will be no apparent patterns.
This line of fit models the data well. It is evenly distributed above and below the x-axis.