McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
2. Solving Quadratic Equations by Graphing
Continue to next subchapter

Exercise 38 Page 109

Practice makes perfect
a Let's make a table of values to graph the function y=x^2.
x x^2 y=x^2
- 2 ( - 2)^2 4
- 1 ( - 1)^2 1
0 ( 0)^2 0
1 ( 1)^2 1
2 ( 2)^2 4

Let's plot the points ( - 2, 4), ( - 1, 1), ( 0, 0), ( 1, 1), and ( 2, 4) then connect them with a smooth curve.

b Since the parabola opens upward, the vertex is located at the minimum point of the parabola. It is the point (0,0).

The points (- 2,4) and (2,4) lie on the parabola.

c To graph the given functions, we will make a table of values of the functions.
x - 2 - 1 0 1 2
y=x^2+2 ( - 2)^2+2= 6 ( - 1)^2+2= 3 ( 0)^2+2= 2 ( 1)^2+2= 3 ( 2)^2+2= 6
y=x^2+4 ( - 2)^2+4= 8 ( - 1)^2+4= 5 ( 0)^2+4= 4 ( 1)^2+4= 5 ( 2)^2+4= 8
y=x^2+6 ( - 2)^2+6= 10 ( - 1)^2+6= 7 ( 0)^2+6= 6 ( 1)^2+6= 7 ( 2)^2+6= 10
  • The ordered pairs ( - 2, 6), ( - 1, 3), ( 0, 2), ( 1, 3), and ( 2, 6) all lie on the function y=x^2+2.
  • The ordered pairs ( - 2, 8), ( - 1, 5), ( 0, 4), ( 1, 5), and ( 2, 8) all lie on the function y=x^2+4.
  • The ordered pairs ( - 2, 10), ( - 1, 7), ( 0, 6), ( 1, 7), and ( 2, 10) all lie on the function y=x^2+6.
We will plot and connect these points with a smooth curve.
d Since each parabola opens upward, the vertices are located at the minimum point of the graphs.
Let's show them in a table.
Function Vertex Points
y=x^2+2 (0, 2) (- 2,6) and (- 2,6)
y=x^2+4 (0, 4) (- 2,8) and (- 2,8)
y=x^2+6 (0,6) (- 2,10) and (- 2,10)
e We can conclude that when we add a positive number, k, to the function y=x^2, the vertex increase by k units.

y=x^2+k Moreover, the graph of the function is translated k units up.