2. Solving Quadratic Equations by Graphing
Sign In
Example Points: (- 2,4) and (2,4)
Function | Vertex | Points |
---|---|---|
y=x^2+2 | (0,2) | (- 2,6) and (- 2,6) |
y=x^2+4 | (0,4) | (- 2,8) and (- 2,8) |
y=x^2+6 | (0,6) | (- 2,10) and (- 2,10) |
x | x^2 | y=x^2 |
---|---|---|
- 2 | ( - 2)^2 | 4 |
- 1 | ( - 1)^2 | 1 |
0 | ( 0)^2 | 0 |
1 | ( 1)^2 | 1 |
2 | ( 2)^2 | 4 |
Let's plot the points ( - 2, 4), ( - 1, 1), ( 0, 0), ( 1, 1), and ( 2, 4) then connect them with a smooth curve.
The points (- 2,4) and (2,4) lie on the parabola.
x | - 2 | - 1 | 0 | 1 | 2 |
---|---|---|---|---|---|
y=x^2+2 | ( - 2)^2+2= 6 | ( - 1)^2+2= 3 | ( 0)^2+2= 2 | ( 1)^2+2= 3 | ( 2)^2+2= 6 |
y=x^2+4 | ( - 2)^2+4= 8 | ( - 1)^2+4= 5 | ( 0)^2+4= 4 | ( 1)^2+4= 5 | ( 2)^2+4= 8 |
y=x^2+6 | ( - 2)^2+6= 10 | ( - 1)^2+6= 7 | ( 0)^2+6= 6 | ( 1)^2+6= 7 | ( 2)^2+6= 10 |
Function | Vertex | Points |
---|---|---|
y=x^2+2 | (0, 2) | (- 2,6) and (- 2,6) |
y=x^2+4 | (0, 4) | (- 2,8) and (- 2,8) |
y=x^2+6 | (0,6) | (- 2,10) and (- 2,10) |
y=x^2+k Moreover, the graph of the function is translated k units up.