Sign In
Start with recalling the properties of special right triangles.
x=9sqrt(2)
y=6sqrt(3)
z=12sqrt(3)
Let's begin by reviewing the properties of special right triangles.
45^(∘) -45 ^(∘) -90 ^(∘) Triangle | 30 ^(∘) -60 ^(∘) -90 ^(∘) Triangle |
---|---|
In a 45^(∘) - 45 ^(∘) - 90 ^(∘) triangle, the legs l are congruent and the hypotenuse h is sqrt(2) times the length of a leg. | In a 30 ^(∘) - 60 ^(∘) - 90 ^(∘) triangle, the hypotenuse h is 2 times the length of the shorter leg s, and the longer leg l is sqrt(3) times the length of the shorter leg. |
|
|
Let's name the vertices of the given figure. Then we can find x,y and z, one at a time.
.LHS /sqrt(2).=.RHS /sqrt(2).
LHS * 1=RHS* 1
Rewrite 1 as sqrt(2)/sqrt(2)
a * 1=a
Multiply fractions
a* a=a^2
( sqrt(a) )^2 = a
a/b=.a /2./.b /2.
a/1=a
We are given that ∠ ABC has a measure of 60^(∘). Therefore, △ ABC is a 30^(∘)-60^(∘)-90 ^(∘) triangle.
.LHS /sqrt(3).=.RHS /sqrt(3).
LHS * 1=RHS* 1
Rewrite 1 as sqrt(3)/sqrt(3)
a * 1=a
Multiply fractions
a* a=a^2
( sqrt(a) )^2 = a
a/b=.a /3./.b /3.
a/1=a
Let's look at the picture for the last time.
To find the value of z, we will again use the 30^(∘)-60 ^(∘)-90 ^(∘) Triangle Theorem. According to this theorem, the length of the hypotenuse z is 2 times the length of the length of the shorter leg, 6sqrt(3). z=2( 6sqrt(3))=12sqrt(3)