1. Bisectors of Triangles
Sign In
The perpendicular bisector of a segment is the perpendicular through its midpoint.
y=7/6x+8/3
We have to find the equation of the perpendicular bisector for the segment whose endpoints are C(- 4,5) and D(2,- 2). We will do this in three steps.
Let's go for it!
Substitute ( - 4,5) & ( 2,- 2)
a+(- b)=a-b
Add and subtract terms
Put minus sign in front of fraction
a/a=1
Substitute ( - 4,5) & ( 2,- 2)
a-(- b)=a+b
Add and subtract terms
Put minus sign in front of fraction
LHS * (- 1)=RHS* (- 1)
LHS * 7=RHS* 7
7 * a/7= a
.LHS /6.=.RHS /6.
Substitute values
a-(- b)=a+b
Distribute 7/6
LHS+3/2=RHS+3/2
a/b=a * 3/b * 3
Multiply
Add fractions
a/b=.a /2./.b /2.