McGraw Hill Glencoe Algebra 2, 2012
MH
McGraw Hill Glencoe Algebra 2, 2012 View details
Get Ready for the Chapter
Continue to next subchapter

Exercise 10 Page 217

Think of the process as multiplying two binomials in reverse.

(x-3)(x-7)

Practice makes perfect
To factor a trinomial with a leading coefficient of one, think of the process as multiplying two binomials in reverse. Let's start by taking a look at the constant term. x^2-10x+21 In this case, we have 21. This is a positive number, so for the product of the constant terms in the factors to be positive, these constants must have the same sign (both positive or both negative.)
Factor Constants Product of Constants
1 and 21 21
- 1 and - 21 21
3 and 7 21
- 3 and - 7 21

Next, let's consider the coefficient of the linear term. x^2-10x+21 For this term, we need the sum of the factors that produced the constant term to equal the coefficient of the linear term, - 10.

Factors Sum of Factors
1 and 21 22
- 1 and - 21 - 22
3 and 7 10
- 3 and - 7 - 10
We found the factors whose product is 21 and whose sum is - 10. x^2-10x+21 ⇔ (x-3)(x-7)

Checking Our Answer

Check your answer âś“
We can check our answer by applying the Distributive Property and comparing the result with the given expression.
(x-3)(x-7)
x(x-7)-3(x-7)
x^2-7x-3(x-7)
x^2-7x-3x+21
x^2-10x+21
After applying the Distributive Property and simplifying, the result is the same as the given expression. Therefore, we can be sure our solution is correct!