Sign In
Consider the Pythagorean Identities, Double-Angle Identities, and Half-Angle Identities.
sin2θ=sqrt(15)/8, cos2θ=7/8, sinθ/2=sqrt(8-2sqrt(15))/4, cosθ/2=sqrt(8+2sqrt(15))/4
Consider the given information. sin θ =1/4; 0^(∘)< θ <90^(∘) We want to find the exact values of sin 2θ, cos 2θ, sin θ2, and cos θ2. To do so, we will use some of the Pythagorean Identities, Double-Angle Identities, and Half-Angle Identities. Let's find the desired values one at a time.
To find the value of sin 2θ, we will use one Pythagorean Identity and one Double-Angle Identity.
| Pythagorean Identity | Double-Angle Identity |
|---|---|
| cos ^2 θ + sin ^2 θ =1 | sin 2θ=2sin θ cos θ |
sin θ= 1/4, cos θ= sqrt(15)/4
a*b/c= a* b/c
Multiply fractions
a/b=.a /2./.b /2.
cos θ= sqrt(15)/4
(a/b)^m=a^m/b^m
( sqrt(a) )^2 = a
Calculate power
a*b/c= a* b/c
Rewrite 1 as 16/16
Subtract fractions
a/b=.a /2./.b /2.
cos θ= sqrt(15)/4
Rewrite 1 as 4/4
Subtract fractions
a/c/b= a/b* c
sqrt(a/b)=sqrt(a)/sqrt(b)
sqrt(a* b)=sqrt(a)*sqrt(b)
Calculate root
a/b=a * sqrt(2)/b * sqrt(2)
sqrt(a)* sqrt(a)= a
sqrt(a)*sqrt(b)=sqrt(a* b)
Distribute 2
Multiply
Therefore, sin θ2 is positive. sin θ/2= sqrt(8-2sqrt(15))/4
cos θ= sqrt(15)/4
Rewrite 1 as 4/4
Add fractions
a/c/b= a/b* c
sqrt(a/b)=sqrt(a)/sqrt(b)
sqrt(a* b)=sqrt(a)*sqrt(b)
Calculate root
a/b=a * sqrt(2)/b * sqrt(2)
sqrt(a)* sqrt(a)= a
sqrt(a)*sqrt(b)=sqrt(a* b)
Distribute 2
Multiply