Practice Test
Sign In
We want to find the exact value of sec(-49π). To do so, let's start by recalling some trigonometric values for special angles.
Trigonometric Values for Special Angles | |||||
---|---|---|---|---|---|
Sine | Cosine | Tangent | Cosecant | Secant | Cotangent |
sin6π=21 | cos6π=23 | tan6π=33 | csc6π=2 | sec6π=323 | cot6π=3 |
sin4π=22 | cos4π=22 | tan4π=1 | csc4π=2 | sec4π=2 | cot4π=1 |
sin3π=23 | cos3π=21 | tan3π=3 | csc3π=323 | sec3π=2 | cot3π=33 |
Next, let's graph θ=-49π in standard position so that we can find its reference angle. This way we can use the values from our table. Note that the terminal side of this angle lies in Quadrant IV. Therefore, to find its reference angle θ′, we will subtract 2π from 49π.