{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
Show less Show more expand_more
{{ ability.description }} {{ ability.displayTitle }}
Lesson Settings & Tools
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }}
{{ 'ml-lesson-time-estimation' | message }}
 Understanding Similarity Transformations
Concept

Similarity Transformation

A combination of rigid motions and dilations is called a similarity transformation. The scale factor of a similarity transformation is the product of the scale factors of the dilations.
One triangle is mapped onto the other triangle using rigid motions and dilations
Move the slider to create a similarity transformation by combining rigid motions and dilations. Similar figures are created as the result of a similarity transformation.
Two similar figures of which one is mapped onto the other after applying rigid motions
Loading content