{{ 'ml-label-loading-course' | message }}
{{ toc.name }}
{{ toc.signature }}
{{ tocHeader }} {{ 'ml-btn-view-details' | message }}
{{ tocSubheader }}
{{ 'ml-toc-proceed-mlc' | message }}
{{ 'ml-toc-proceed-tbs' | message }}
Lesson
Exercises
Recommended
Tests
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}. 

{{ article.displayTitle }}

{{ article.intro.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
{{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }} {{ ability.displayTitle }}
{{ 'ml-heading-lesson-settings' | message }}
{{ 'ml-lesson-number-slides' | message : article.intro.bblockCount}}
{{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount}}
{{ 'ml-lesson-time-estimation' | message }}
Concept

Scientific Notation

Scientific notation is a compact way of writing very large or very small numbers. A number written in scientific notation is expressed as a product of two numbers.
In this form, the first factor is greater than or equal to and less than In other words, it needs to be in the interval The second factor is a power of where is an integer. For example, the number million can be rewritten as the product of and a multiple of Then, the multiple of is rewritten as a base power.
Very small decimal numbers can also be written in scientific notation. Consider a number where there are many zeros before the significant figures. Take as as an example.
In such cases, numbers are expressed as a division by a multiple of Division by a multiple of is equivalent to multiplication by a base power with a negative exponent. Consider a few more examples of numbers written in scientific notation.
Decimal Form Written as a Product or Division Expression Scientific Notation

Intuitive Method: Rewriting a Number in Scientific Notation

An intuitive method to rewrite a number into scientific notation is to count the number of places the decimal needs to move. Consider a number greater than The decimal would move from right to left to make the number less than but still greater than The number of places the decimal moved indicates the positive exponent to be used for the base power.
Moving the Decimals to the Left
Similarly, for numbers less than such as the decimal will move from left to right to make the number greater than or equal to and less than In this case, the number of places moved indicates the negative exponent to be used for the base power.
Moving the Decimals to the Right
Scientific notation is not only a convenient way to express cumbersome numbers. It also eases the comparison of numerical order of magnitude. For example, it may be difficult to determine how much larger is compared to However, it is easier to see that and differ by a factor of about