{{ toc.signature }}
{{ toc.name }}
{{ stepNode.name }}
Proceed to next lesson
An error ocurred, try again later!
Chapter {{ article.chapter.number }}
{{ article.number }}.

# {{ article.displayTitle }}

{{ article.introSlideInfo.summary }}
{{ 'ml-btn-show-less' | message }} {{ 'ml-btn-show-more' | message }} expand_more
##### {{ 'ml-heading-abilities-covered' | message }}
{{ ability.description }}

#### {{ 'ml-heading-lesson-settings' | message }}

{{ 'ml-lesson-show-solutions' | message }}
{{ 'ml-lesson-show-hints' | message }}
 {{ 'ml-lesson-number-slides' | message : article.introSlideInfo.bblockCount}} {{ 'ml-lesson-number-exercises' | message : article.introSlideInfo.exerciseCount}} {{ 'ml-lesson-time-estimation' | message }}

# Absolute Complement

The absolute complement — or simply complement— of a set contains all the elements in the universal set that do not belong to The complement of can be denoted as or
The above set can be read as the set of all numbers such that is not an element of set In a Venn Diagram, the complement of is shown by coloring the area outside
For instance, consider the integer numbers as a universal set. If is the set of positive integers, then the complement of contains the negative integers and zero.