Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Graphing Absolute Value Functions

Graphing Absolute Value Functions 1.11 - Solution

arrow_back Return to Graphing Absolute Value Functions

In order to graph the given absolute value function, we can make a table of values.

xx f(x)=-35xf(x)=\text{-}\dfrac{3}{5}|x| Simplified Absolute Value f(x)f(x)
-5{\color{#0000FF}{\text{-}5}} f(-5)=-35-5f({\color{#0000FF}{\text{-}5}})=\text{-}\dfrac{3}{5}|{\color{#0000FF}{\text{-}5}}| f(-5)=-35(5)f({\color{#0000FF}{\text{-}5}})=\text{-}\dfrac{3}{5}(5) -3\text{-}3
-3{\color{#0000FF}{\text{-}3}} f(-3)=-35-3f({\color{#0000FF}{\text{-}3}})=\text{-}\dfrac{3}{5}|{\color{#0000FF}{\text{-}3}}| f(-3)=-35(3)f({\color{#0000FF}{\text{-}3}})=\text{-}\dfrac{3}{5}(3) -1.8\text{-} 1.8
0{\color{#0000FF}{0}} f(0)=-350f({\color{#0000FF}{0}})=\text{-}\dfrac{3}{5}|{\color{#0000FF}{0}}| f(0)=-35(0)f({\color{#0000FF}{0}})=\text{-}\dfrac{3}{5}(0) 00
3{\color{#0000FF}{3}} f(3)=-353f({\color{#0000FF}{3}})=\text{-}\dfrac{3}{5}|{\color{#0000FF}{3}}| f(3)=-35(3)f({\color{#0000FF}{3}})=\text{-}\dfrac{3}{5}(3) -1.8\text{-} 1.8
5{\color{#0000FF}{5}} f(5)=-355f({\color{#0000FF}{5}})=\text{-}\dfrac{3}{5}|{\color{#0000FF}{5}}| f(5)=-35(5)f({\color{#0000FF}{5}})=\text{-}\dfrac{3}{5}(5) -3\text{-}3

Now we can graph f(x)f(x) by plotting the points and connecting them with straight lines on either side of the vertex.