b When , the first fraction is multiplied with the second fraction's .
3x2+5x−24x2+5x−6÷6x2−5x+14x2+x−3
3x2+5x−24x2+5x−6⋅4x2+x−36x2−5x+1
(3x2+5x−2)(4x2+x−3)(4x2+5x−6)(6x2−5x+1)
To simplify the fraction, we need to . Let's start with the first parentheses in the numerator.
4x2+5x−6
4x2+8x−3x−6
4x(x+2)−3x−6
4x(x+2)−3(x+2)
(4x−3)(x+2)
It was possible to write the expression as two factors. We will now do the same thing with the next parentheses.
6x2−5x+1
6x2−3x−2x+1
3x(2x−1)−2x+1
3x(2x−1)−1(2x−1)
(3x−1)(2x−1)
Now we move down to the denominator for some more factoring!
3x2+5x−2
3x2+6x−x−2
3x(x+2)−x−2
3x(x+2)−1(x−2)
(3x−1)(x+2)
Let's factor the final one as well.
4x2+x−3
4x2+4x−3x−3
4x(x+1)−3x−3
4x(x+1)−3(x+1)
(4x−3)(x+1)
We can now use the of each parentheses to simplify the fractions.
(3x2+5x−2)(4x2+x−3)(4x2+5x−6)(6x2−5x+1)
(3x−1)(x+2)(4x−3)(x+1)(4x−3)(x+2)(3x−1)(2x−1)
(x+1)(4x−3)(3x−1)(x+2)(2x−1)(4x−3)(3x−1)(x+2)
x+12x−1⋅(4x−1)(3x−1)(x+2)(4x−3)(3x−1)(x+2)
x+12x−1⋅1
x+12x−1