Core Connections: Course 3
CC
Core Connections: Course 3 View details
1. Section 5.1
Continue to next subchapter

Exercise 6 Page 190

Practice makes perfect
To solve an equation, we should first gather all of the variable terms on one side and all of the constant terms on the other side using the properties of equality. Let's do it!
2x+22=12
2x+22-22=12-22
2x=- 10
2x/2=- 10/2
x= - 5
The solution to the equation is x=- 5.
To solve an equation for y, we should first gather all of the y-terms on one side and all of the other terms on the other side using the properties of equality. Let's do it!
2x-y=3
2x-y+y=3+y
2x=3+y
2x-3=3+y-3
2x-3=y
y=2x-3
The solution to the equation is y=2x-3.
To solve an equation, we should first gather all of the variable terms on one side and all of the constant terms on the other side using the properties of equality. Let's do it!
2x+15=2x-15
2x+15-15=2x-15-15
2x=2x-30
2x-2x=2x-30-2x
0≠ - 30 *
Notice that solving the equation for x resulted in a false statement. This means that the given equation has no solution.
To solve an equation for y, we should first gather all of the y-terms on one side and all of the other terms on the other side using the properties of equality. Let's do it!
6x+2y=10
6x+2y-6x=10-6x
2y=10-6x
2y/2=10-6x/2
y=10-6x/2
y=10/2-6x/2
y=5-3x
The solution to the equation is y=5-3x.