Sign In
1^(st) Quartile = 2.50
Median = 2.91
3^(rd) Quartile =3.49
Maximum value=4.29
|l| 1^(st) 1.58 2^(nd) 1.87 3^(rd) 2.32 4^(th) 2.44 5^(th) 2.46 6^(th) 2.46 7^(th) 2.50 8^(th) 2.63 9^(th) 2.69 [1.25em] 10^(th) 2.72 11^(th) 2.78 12^(th) 2.81 13^(th) 2.83 14^(th) 2.99 15^(th) 3.10 16^(th) 3.16 17^(th) 3.30 18^(th) 3.42 [1.25em] 19^(th) 3.46 20^(th) 3.49 21^(th) 3.54 22^(th) 3.67 23^(th) 3.75 24^(th) 3.87 25^(th) 3.89 26^(th) 4.29 The median is 2.83+2.992=2.91. To find the 1^(st) and 3^(rd) Quartile, we have to identify the middle value of the lower and upper half, which will be the 7^(th) and 20^(th) value respectively. |l| 1^(st) 1.58 2^(nd) 1.87 3^(rd) 2.32 4^(th) 2.44 5^(th) 2.46 6^(th) 2.46 7^(th) 2.50 8^(th) 2.63 9^(th) 2.69 [1.25em] 10^(th) 2.72 11^(th) 2.78 12^(th) 2.81 13^(th) 2.83 14^(th) 2.99 15^(th) 3.10 16^(th) 3.16 17^(th) 3.30 18^(th) 3.42 [1.25em] 19^(th) 3.46 20^(th) 3.49 21^(th) 3.54 22^(th) 3.67 23^(th) 3.75 24^(th) 3.87 25^(th) 3.89 26^(th) 4.29 Let's summarize what we have found. &Minimum value=1.58 &1^(st) Quartile = 2.50 &Median = 2.91 &3^(rd) Quartile =3.49 &Maximum value=4.29
r|l Interval & Observations 1.5-2 & 1.58 2.97 2-2.5 & 2.32 2.44 2.46 2.46 2.5-3 & 2.50 2.63 2.69 2.72 2.78 2.81 & 2.83 2.99 3-3.5 & 3.10 3.16 3.30 3.42 3.46 3.49 3.5-4 & 3.54 3.67 3.75 3.87 3.89 4-4.5 & 4.29 Now we have all the information we need to draw the combination histogram and boxplot.