4. The Triangle Midsegment Theorem
Sign In
What characteristics do parallel lines have in a coordinate plane? How can you calculate the length of a segment?
F(p,0)
Let's add the midsegment, EF, to the diagram.
Segment | Points | y_2-y_1/x_2-x_1 | m |
---|---|---|---|
OB | ( 2q,2r), ( 0,0) | 2r- 0/2q- 0 | r/q |
EF | ( q+p,r), ( p,0) | r- 0/( q+p)- p | r/q |
Both segments have a slope of rq which means they are parallel. Finally, we can show that FE= 12OB by calculating the length of FE and OB using the Distance Formula.
Segment | Points | sqrt((x_2-x_1)^2+(y_2-y_1)^2) | d |
---|---|---|---|
OB | ( 2q,2r), ( 0,0) | sqrt(( 2q- 0)^2+( 2r- 0)^2) | sqrt(4q^2+4r^2) |
FE | ( q+p,r), ( p,0) | sqrt((( q+p)- p)^2+( r- 0)^2) | sqrt(q^2+r^2) |
EF= sqrt(q^2+r^2), OB= sqrt(4q^2+4r^2)
Factor out 4
sqrt(a* b)=sqrt(a)*sqrt(b)
Calculate root
1/b* a = a/b
a/a=1