| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
Here is a recommended reading to go over before getting started with this lesson.
A ratio is a comparison of two quantities that describes how much of one thing there is compared to another. Ratios are commonly represented using colon notation or as fractions. They are read as the ratio of a to b,
where b is a non-zero number.
The ratio a:b means that for every a units of one quantity, there are b units of another quantity. Ratios can be part-to-part or part-to-whole.
Part-To-Part | Part-To-Whole | |
---|---|---|
Explanation | Describes how two different groups are related | Describes the relationship between a specific group to a whole |
Example 1 | The number of sophomores to freshmen on the basketball team is 7:15. | The number of sophomores to all basketball team members is 7:22. |
Example 2 | The number of mangoes to jackfruits the vendor has is 10:20. | The number of mangoes to all fruits the vendor has is 10:42. |
Fraction Form | Greatest Common Factor | Rewrite | Simplify | |
---|---|---|---|---|
Tearrik | 1527 | GCF(27,15)=3 | 5⋅39⋅3 | 59 |
Zain | 2545 | GCF(45,25)=5 | 5⋅59⋅5 | 59 |
The applet shows different ratios using colon notation. Write the simplest form of the indicated ratio. Consider that some ratios might already be in their simplest form.
It’s a beautiful Friday. Zain and their mother are celebrating their other parent's return home tonight after a week-long work trip. Zain's mother asks them for help to make homemade pizzas for dinner.
Their recipe is strict and claims that for every six olives on the pizza, two mushrooms must be added. If Zain plans to put 30 olives on the pizza, how many mushrooms must the pizza have?Write the ratio of the number of olives to the number of mushrooms. Write an equivalent ratio to the original ratio where the numerator of the new ratio is 30. What number multiplied by 6 gives 30? Multiply 2 by the number found previously to find the number of mushrooms needed.
The two pizzas Zain and their mother made are still in the oven, smelling amazing. They decide to pass time by planning another weekend project — paint their house the color of an orange poppy flower! They want it to be a specific shade of orange. This shade is a result of a mixture of red and yellow in a ratio of 5:4.
Zain's mother says they will need a total of 18 liters of this shade of orange. Then, they will need to calculate how many liters of yellow and red paint are necessary to create the mixture. Which option describes the right amount?Find the total amount described by the given ratio. Use this total amount to write a part-to-whole ratio for each color. Write an equivalent ratio for one of the part-to-whole ratios. The denominator of this equivalent ratio is 18. What number multiplied by 9 gives 18? Find the numerator of the equivalent ratio
Part-To-Whole Ratios | |
---|---|
Red Paint | Yellow Paint |
95 | 94 |
Scenario | Rate | Unit Rate |
---|---|---|
Kriz finds 20 Pokémon every 10 days. | 20 Pokémon per 10 days, 10 Pokémon per 5 days |
2 Pokémon per 1 day, 730 Pokémon per 1 year |
At a party, 42 candies were eaten by 6 kids. | 42 candies per 6 kids, 21 candies per 3 kids |
7 candies per 1 kid |
The two pizzas Zain and their mother prepared earlier were a such a great success. Now they are thinking to prepare more pizzas for a local charity.
Write the rate for this situation. Divide the numerator and denominator of the rate by its denominator to find the unit rate. Multiply the unit rate by the number of pizzas that are needed. Divide the result by 60 to get the number of hours of prep time.
Zain realizes that their parent is so late arriving home. Zain calls. "Where are you?" The parent picks up and says, "Hey, Zain! I am 160 miles away. I will be home in 2 hours."
Think about going shopping at the market. There are tons of different brands, and the same brand usually offers the same product packaged in different sizes. Deciding what to buy can be overwhelming.
People tend to think larger packages have a lower price per unit. Actually, that is true only sometimes. Comparing the unit rate will help decide whether buying more smaller packages or one large package offers a better deal. The unit rate describes the cost per pound, quart, kilogram, or other corresponding unit of measure.
Compare unit prices to find the best value for money. |
Consider the following advertisement. Delicious standard-sized and giant-sized chocolate bars are on sale.
Is the giant-size bar a better option? Write the rates as fractions. That will help to find the unit rate for each bar later.
Standard-Size | Giant-Size | |
---|---|---|
Rate | $1.191.55 oz | $8.597 oz |
Divide the numerator and denominator of the standard size rate by 1.19 to get its unit rate. Similarly, divide the numerator and denominator of the giant size ratio by 8.59.
Standard-Size | Giant-Size | |
---|---|---|
Rate | $1.191.55 oz | $8.597 oz |
Unit Rate | $11.30 oz | $10.81 oz |