Sign In
Perimeter A'B'C'D'E': 56
Area ABCDE: 52
Area A'B'C'D'E': 208
To enlarge the polygon by a factor of 2, we have to double the distance between each vertex and the origin in the same direction. We can do this if we multiply each point's coordinates by 2.
Point original | (x,y) | (2x,2y) |
---|---|---|
A | (- 3,- 2) | (- 6,- 4) |
B | (5,- 2) | (10,- 4) |
C | (5,3) | (10,6) |
D | (1,6) | (2,12) |
E | (- 3,3) | (- 6,6) |
With this, we can plot the dilated polygon.
Points | sqrt((x_2-x_1)^2+(y_2-y_1)^2) | d |
---|---|---|
D( 1,6), E( - 3,3) | sqrt(( 1-( - 3))^2+( 6- 3)^2) | 5 |
C( 5,3), E( 1,6) | sqrt(( 5- 1)^2+( 3- 6)^2) | 5 |
D'( 2,12), E'( - 6,6) | sqrt(( 2-( - 6))^2+( 12- 6)^2) | 10 |
C'( 10,6), E'( 2,12) | sqrt(( 10- 2)^2+( 6- 12)^2) | 10 |
Let's mark the last sides length in the diagram.
Now we have enough information to calculate the perimeters of the polygons. ABCDE:& 8+5+5+5+5=28 A'B'C'D'E':& 16+10+10+10+10=56 To find the area of the polygons, we will divide them into a rectangle and a triangle. Note that the area of a triangle is half it's base times it's height. Therefore, we will also mark the triangle heights.
Now we have enough information to calculate the area of the polygons. ABCDE:& (8)(5)+1/2(8)(3)=52 A'B'C'D'E':& (10)(16)+1/2(16)(6)=208