7. Recursively Defined Sequences
Sign In
n | f(n)=6f(n−1) | f(n) |
---|---|---|
1 | f(1)=-1 | -1 |
2 | f(2)=6f(2−1) ⇕ f(2)=6f(1) |
f(2)=6(-1) ⇕ f(2)=-6 |
3 | f(3)=6f(3−1) ⇕ f(3)=6f(2) |
f(3)=6(-6) ⇕ f(3)=-36 |
4 | f(4)=6f(4−1) ⇕ f(4)=6f(3) |
f(4)=6(-36) ⇕ f(4)=-216 |
5 | f(5)=6f(5−1) ⇕ f(5)=6f(4) |
f(5)=6(-216) ⇕ f(5)=-1296 |
6 | f(6)=6f(6−1) ⇕ f(6)=6f(5) |
f(6)=6(-1296) ⇕ f(6)-7776 |
7 | f(7)=6f(7−1) ⇕ f(7)=6f(6) |
f(7)=6(-7776) ⇕ f(7)=-46656 |
8 | f(8)=6f(8−1) ⇕ f(8)=6f(7) |
f(8)=6(-46656) ⇕ f(8)=-279936 |
9 | f(9)=6f(9−1) ⇕ f(9)=6f(8) |
f(9)=6(-279936) ⇕ f(9)=-1679616 |
10 | f(10)=6f(10−1) ⇕ f(10)=6f(9) |
f(10)=6(-1679616) ⇕ f(10)=-10077696 |
Therefore, f(2)=-6, f(5)=-1296 and f(10)=-10077696.