Sign In
THAT IS MY FINAL ANSWER
Let's consider the given cryptogram! 21 - 11 14 29 - 11 - 18 32 - 6 - 26 31 - 19 - 12 10 6 26 13 - 11 -2 37 28 - 8 5 13 36 We want to decode the cryptogram using the decoding matrix A^(- 1). We can do so in three steps.
We can do each of these steps one at a time.
We can find the decoding matrix using a graphing calculator. First, we can look at the given matrix A. A= 1&- 1&0 0&1&2 1&1&- 2 Now, let's enter the matrix A into the calculator. Push 2ND and x^(- 1). Then, using the right arrow, navigate to the Edit tab and push ENTER. Define the dimensions and enter the elements.
Now that we have entered the matrix we push 2ND followed by MODE to go back to the main screen. Then, we push 2ND and x^(- 1), select our matrix, and push ENTER.
Finally, we push x^(- 1), followed by ENTER. This will return us the inverse of our matrix!
We cannot properly see the elements of the inverse matrix because they are written as decimals. Let's express them as fractions. To do so, press MODE, scroll down to the Answers
option, and select Frac.
Then, we go back to the main screen by pushing 2ND and MODE, and push ENTER one last time.
We found the decoding matrix! A^(-1) = 23 & 13 & 13 [0.4em] - 13 & 13 & 13 [0.4em] 16 & 13 & - 16 [0.4em]
32 &- 6&- 26 \\ 31& - 19&- 1210& 6&2613& - 11&- 2 \\ 37& 28&- 8 5& 13&36}
Multiply matrices
- a(- b)=a* b
(- a)b = - ab
a(- b)=- a * b
a*b/c= a* b/c
Multiply
a* 1/b= a/b
a/b=.a /2./.b /2.
Add and subtract fractions
Add and subtract terms
Calculate quotient
Coded Row Matrix | Calculation | Decoded Row Matrix |
---|---|---|
21&- 11&14 | 21& - 11 & 14 23 & 13 & 13 [0.4em]- 13 & 13 & 13 [0.4em] 16 & 13 & - 16 [0.4em] | 20&8&1 |
21&- 11&14 | 21& - 11 & 14 23 & 13 & 13 [0.4em]- 13 & 13 & 13 [0.4em] 16 & 13 & - 16 [0.4em] | 20&0&9 |
21&- 11&14 | 21& - 11 & 14 23 & 13 & 13 [0.4em]- 13 & 13 & 13 [0.4em] 16 & 13 & - 16 [0.4em] | 19&0&13 |
21&- 11&14 | 21& - 11 & 14 23 & 13 & 13 [0.4em]- 13 & 13 & 13 [0.4em] 16 & 13 & - 16 [0.4em] | 25&0&6 |
21&- 11&14 | 21& - 11 & 14 23 & 13 & 13 [0.4em]- 13 & 13 & 13 [0.4em] 16 & 13 & - 16 [0.4em] | 9&14&1 |
21&- 11&14 | 21& - 11 & 14 23 & 13 & 13 [0.4em]- 13 & 13 & 13 [0.4em] 16 & 13 & - 16 [0.4em] | 12&0&1 |
21&- 11&14 | 21& - 11 & 14 23 & 13 & 13 [0.4em]- 13 & 13 & 13 [0.4em] 16 & 13 & - 16 [0.4em] | 14&19&23 |
21&- 11&14 | 21& - 11 & 14 23 & 13 & 13 [0.4em]- 13 & 13 & 13 [0.4em] 16 & 13 & - 16 [0.4em] | 5&18&0 |
Now, we can list the sequence of coded row matrices. 9&0&23 9&12&12 0&2&5 0&2&1 3&11&0 Let's recall which numbers are assigned to which letter in the alphabet. Remember that blank space corresponds to 0.
Code | ||
---|---|---|
0= | 9=I | 18=R |
1=A | 10=J | 19=S |
2=B | 11=K | 20=T |
3=C | 12=L | 21=U |
4=D | 13=M | 22=V |
5=E | 14=N | 23=W |
6=F | 15=O | 24=X |
7=G | 16=P | 25=Y |
8=H | 16=Q | 26=Z |
Finally, we can use our table to rewrite each 1* 3 matrix.
Group of Three Letters | Coded Row Matrix |
---|---|
20&8&1 | T&H&A |
20&0&9 | T& &I |
19&0&13 | S& &M |
25&0&6 | Y & & F |
9&14&1 | I&N&A |
12&0&1 | L & & A |
14&19&23 | N&S&W |
5&18&0 | E&R& |
Now, we can list the sequence of decoded row matrices. T&H&A T& &I S& M Y& &F I&N&A L& &A N&S&W E&R& Finally, we can remove the matrix notation and write the message corresponding to our cryptogram. THAT IS MY FINAL ANSWER